

Introduction to the MSSLC Retrofit Financial Analysis Tool

March 16, 2012

Edward Smalley

Director, Municipal Solid-State Street Lighting Consortium Seattle City Light | Government and Legislative Affairs

<u>Edward.smalley@seattle.gov</u> <u>http://seattle.gov.light | www.ssl.energy.gov/consortium.html</u>

Purpose and Background

- Tool created to evaluate costs and benefits of conversions to LED street lighting.
- May be used to analyze any street-lighting technology.
- Detailed analysis provides numerous outputs, including:
 - Annual energy and energy-cost savings
 - Annual maintenance savings
 - Annual greenhouse gas reductions
 - Simple payback
 - Internal rate of return
 - Net present value
- Collaborative effort
 - Clinton Climate Initiative <u>http://www.clintonfoundation.org/what-we-do/clinton-climate-initiative/</u>
 - Municipal Solid-State Lighting Consortium
 http://www1.eere.energy.gov/buildings/ssl/consortium.html

Structure and Flow of Tool

- Input page
- Maintenance page (optional)
- Results summary
- Finance page (optional)

Input Page

- Contains all assumptions for project, except optional project finance and detailed maintenance cost assumptions.
- Three sections:
 - Global inputs that affect all analyzed fixtures
 - Includes discount rate, sales tax rate, electricity rate, rates for installation labor and vehicles, GHG emissions factor, and project overhead costs.
 - Technology-specific inputs section one
 - Enter data for all fixtures/technologies, both old and new.
 - Includes lamp and system watts, operating hours, fixture costs, disposal costs, rebates, and maintenance costs.
 - Technology-specific inputs section two
 - Impacted fixtures only; select fixture types and quantities to be removed and installed.

Maintenance Page (optional)

- Used to derive maintenance costs, if user does not know them on a \$/unit/month basis.
- Provides ability to obtain very detailed estimate of maintenance costs for each technology or fixture type examined.
- Captures both labor and vehicle costs.
- Scheduled maintenance
 - Lamp Controls
 - Fixture Cleaning
- Emergency maintenance
 - Lamp Controls
 - Fixture

Results Summary

- Summary statistics include:
 - Simple payback
 - Internal rate of return
 - Net present value
 - Full-implementation reductions of energy use, energy costs, and greenhouse gases
- 15 years of detailed annual cash flow data
- Charts
 - Cumulative total cash flows over time
 - Pre- and post-project energy consumption comparison
 - Annual cash flows broken out by component over time

Finance Page (optional)

- Provides user ability to examine impacts of various financing options.
 - Up to 8 loans of varying amounts, terms, interest rates, and start years may be examined.
- Produces levered and unlevered summary statistics for project.
 - Net present value
 - Internal rate of return
- Generates detailed annual cash flow data.

Resources

- MSSLC home page: http://www1.eere.energy.gov/buildings/ssl/consortium.html
- MSSLC Retrofit Financial Analysis Tool web page: http://www1.eere.energy.gov/buildings/ssl/financial-tool.html
 - Zip file including two versions of tool (with and without sample data)
 - Document providing helpful tips (which will expand over time)
 - Explanatory video
- Questions about the Retrofit Financial Analysis Tool can be sent to MSSLC@seattle.gov

LED Street Lighting Workshop | Dallas, TX

March 16, 2012

Retrofit Financial Analysis tool

Thank You...! Questions?

Edward Smalley

<u>Edward.smalley@seattle.gov</u> <u>http://seattle.gov.light|www.ssl.energy.gov/consortium.html</u>